Electrical and Computer Engineering with Concentration in Microsystems, Materials, and Devices, MSECE (Boston)

For program contact information, please visit this website (https://ece.northeastern.edu/academics/graduate-studies/ms-elee/).

The master's degree program in electrical and computer engineering offers in-depth coursework within the concentration-choice-related areas. The curriculum is integrated and intensive and is built on state-of-the-art research, taught by faculty who are experts in their areas.

Excluded Courses for All MSECE Concentrations

Students cannot take excluded courses as part of the MSECE program and may not petition to take these courses, as any petition to take these courses will be automatically rejected. Courses from the following subject areas may not count toward any concentration within the MSECE program: CSYE, DAMG, INFO, TELE. Select CS courses are also excluded from all MSECE concentrations. Please see the program requirements tab and your college administrator for more information.

Graduate Certificate Options

Students enrolled in a master's degree have the opportunity to also pursue one of the many engineering graduate certificate options in addition to or in combination with the MS degree. Students should consult their faculty advisor regarding these options (https://catalog.northeastern.edu/graduate/engineering/graduate-certificate-programs/).

GORDON INSTITUTE OF ENGINEERING LEADERSHIP

Master's Degree in Electrical and Computer Engineering with Concentration in Microsystems, Materials, and Devices with Graduate Certificate in Engineering Leadership

Students may complete a Master of Science in Electrical and Computer Engineering with Concentration in Microsystems, Materials, and Devices in addition to earning a Graduate Certificate in Engineering Leadership (https://catalog.northeastern.edu/graduate/engineering/multidisciplinary/engineering-leadership-graduate-certificate/). Students must apply and be admitted to the Gordon Engineering Leadership Program in order to pursue this option. The program requires fulfillment of the 16-semester-hour curriculum required to earn the Graduate Certificate in Engineering Leadership, which includes an industry-based challenge project with multiple mentors. The integrated 40-semester-hour degree and certificate will require 24 semester hours of advisor-approved microsystems, materials, and devices technical courses. For students who concurrently enroll in the Graduate Certificate in Engineering Leadership, 8 semester hours of the certificate project may be applied to this program's thesis requirements.

Program Requirements

Complete all courses and requirements listed below unless otherwise indicated.

Fundamental Courses

Code	Title	Hours
Complete at least 8 semester hours from th	e following:	8
EECE 5606	Micro- and Nanofabrication	
EECE 7201	Solid State Devices	
EECE 7244	Introduction to Microelectromechanical Systems (MEMS)	
EECE 7353	VLSI Design	

Options

Complete one of the following options:

COURSEWORK OPTION

Code	Title	Hours
Concentration Courses		
Complete 16 semester hours from the concentration course list below. Any fundamental course not used to meet the fundamental course requirement can be used toward the concentration course requirement.		
Electives		
Complete 8 semester hours from	n either concentration courses or from other concentrations.	8

THESIS OPTIOI

THESIS UPTION		
Code	Title	Hours
Thesis		
EECE 7945	Master's Project	4
EECE 7990	Thesis	4

2 Electrical and Computer Engineering with Concentration in Microsystems, Materials, and Devices, MSECE (Boston)

In addition to completing the thesis course, students must successfully complete the thesis submission process, including securing committee and Graduate School of Engineering signatures and submission of an electronic copy of their MS thesis to ProQuest.

Concentration Courses

Complete 8 semester hours from the concentration course list below. Any fundamental course not used to meet the fundamental course requirement can be used toward the concentration course requirement.

8

Electives

Complete 8 semester hours from either concentration courses or from other concentrations.

Optional Co-op Experience

Co	ode	Title	Hours
	Complete the following (students must o	complete ENCP 6100 to qualify for co-op experience):	
	ENCP 6100	Introduction to Cooperative Education	
	ENCP 6964	Co-op Work Experience	
	or ENCP 6954	Co-op Work Experience - Half-Time	
	or ENCP 6955	Co-op Work Experience Abroad - Half-Time	
	or ENCP 6965	Co-op Work Experience Abroad	

Course Lists

In the coursework option, a maximum of two courses may be taken outside of electrical and computer engineering. Thesis track students can take up to three courses outside of electrical and computer engineering.

CONCENTRATION COURSES

Code	Title	Hours
EECE 5161	Thin Film Technologies	
EECE 5606	Micro- and Nanofabrication	
EECE 5608	Magnetic Materials for Next-Generation Electronics	
EECE 5647	Nanophotonics	
EECE 5649	Design of Analog Integrated Circuits with Complementary Metal-Oxide- Semiconductor Technology	
EECE 5651	Introduction to Photonic Devices	
EECE 5652	Microwave Circuits and Systems	
EECE 5653	Introduction to Quantum Engineering	
EECE 5698	Special Topics in Electrical and Computer Engineering (Biomedical Microsystems)	
EECE 5698	Special Topics in Electrical and Computer Engineering (Flexible and Printed Electronics)	
EECE 5698	Special Topics in Electrical and Computer Engineering (Introduction to Organic and Printed Electronics)	
EECE 5698	Special Topics in Electrical and Computer Engineering (Magnetic Materials and Devices for Microwave Engineering)	
EECE 5698	Special Topics in Electrical and Computer Engineering (Photonic Devices for Communication Systems)	
EECE 5698	Special Topics in Electrical and Computer Engineering (Semiconductor Packaging)	
EECE 5698	Special Topics in Electrical and Computer Engineering (Visual Sensing & Computing Co-Design Edge Machine Perception)	
EECE 6400	Special Problems in Electrical and Computer Engineering (*For MSECE and PhD-BS students only)	
EECE 7201	Solid State Devices	
EECE 7240 and EECE 7248	Analog Integrated Circuit Design and Lab for EECE 7240	
EECE 7244	Introduction to Microelectromechanical Systems (MEMS)	
EECE 7245	Microwave Circuit Design for Wireless Communication	
EECE 7247	Radio Frequency Integrated Circuit Design	
EECE 7250	Power Management Integrated Circuits	
EECE 7284	Optical Properties of Matter	

EECE 7296	Electronic Materials
EECE 7353	VLSI Design
EECE 7398	Advanced Special Topics in Electrical and Computer Engineering (Advanced Radio Frequency Passive Technologies)
EECE 7398	Advanced Special Topics in Electrical and Computer Engineering (Advances in Communication Electronics)
EECE 7398	Advanced Special Topics in Electrical and Computer Engineering (Low Power Integrated Circuits Design)
EECE 7398	Advanced Special Topics in Electrical and Computer Engineering (Photonic Circuit Design for Information Processing)
EECE 7400	Advanced Special Problems in Electrical and Computer Engineering (*For PhD-AE students only)

EXCLUDED COURSES FOR ALL MSECE CONCENTRATIONS

Please see your college administrator for more information.

Code	Title		Hours
Courses from the following	g subject areas may not count toward a	any concentration within the MSECE program:	
CSYE, DAMG, INFO, TEL	E		
The following CS courses	may not count toward any concentratio	on within the MSECE program:	
CS 5010	Programming Design	gn Paradigm	
CS 5330	Pattern Recognition	n and Computer Vision	
CS 5340	Computer/Human In	nteraction	
CS 5520	Mobile Application D	Development	
CS 5610	Web Development		
CS 5700	Fundamentals of Co	omputer Networking	
CS 5800	Algorithms		
CS 6140	Machine Learning		
CS 6350	Empirical Research	Methods	

Program Credit/GPA Requirements

32 total semester hours required (33 with optional co-op) Minimum 3.000 GPA required